
Accurate and Efficient Numerical Methods for Pricing
and Hedging American Put Options

Jun Ouyang∗,
supervised by Professor Kenneth Jackson,1

1Department of Computer Science, University of Toronto,
10 King’s College Rd, Toronto, ON, M5S 3G4, Canada

∗To whom correspondence should be addressed; E-mail: jun.ouyang@www.utoronto.ca.

Accurate and efficient methods for pricing and hedging financial derivatives is

critical in many financial applications. Many derivatives have well developed

mathematical models, but the models do not have a closed form solution. The

pricing of American put options is a case in point.

1 Introduction

This report explores the different methods for solving European, and, most importantly, Ameri-

can put options derived from the well-known Black-Scholes equation. For European put options,

we transform the problem to a diffusion equation and develop mesh approximation to numeri-

cally solve the partial differential equation. All methods are based on numerical algorithms and

the results are compared and analyzed to the explicit solution of the Black-Scholes formula. For

American put options, the idea of the linear complementary problem is used to solve the free

boundary condition in the partial differential equation. Mainly, we focus on both accuracy and

efficiency of each algorithm.

1

2 Background

2.1 European and American Put Option

A put option is a fundamental financial instrument. The value of a put option at the termination

of the contract is given by the following equation:

P (S, T) = max(E − S, 0),

where E is the exercise price and S is the value of underlying assets. The put option is called

European if we can only exercise the option on maturity T . In contrast, an American put option

can be exercised at any time up to maturity.

2.2 Black-Scholes Equation

In the Black-Scholes model, we treat a financial instrument V (S, t) as a function of time t and

the value of the underlying asset S. For the underlying asset S, we assume:

1. S follows a the lognormal random walk process, namely:

dS

S
= σdX + µdt

2. The risk free interest rate r and asset volatility σ are known constants.

3. There are no transaction costs, no dividends, and no arbitrage opportunity.

Ito’s Lemma: If f(S, t) is a function of a random variable S and time t, df satisfies:

df = σS
∂f

∂S
dX + (µS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
+
∂f

∂t
)dt

We construct a well-designed portfolio Π consisting of the put option V and the underlying

asset S such that Π = V − ∆S. By choosing ∆ = ∂V
∂S

and applying Ito’s Lemma, dΠ can be

2

expressed as:

dΠ = (
∂V

∂t
+

1

2
σ2S2 ∂

2f

∂S2
)dt

Since dΠ is risk-free, by our arbitrage-free assumption, it must satisfy:

dΠ = rΠdt

Therefore,

(
∂V

∂t
+

1

2
σ2S2 ∂

2f

∂S2
)dt = rΠdt

Then we plug in the assumed portfolio Π = V − ∂V
∂S
S and re-arrange the equation to get:

∂V

∂t
+

1

2
σ2S2 ∂

2f

∂S2
+ rS

∂V

∂S
− rV = 0

This is the well-known Black-Scholes equation. Note this can be transformed to a diffusion

equation after simply change of variables. The Black-Scholes formula for European put options

is given by:

P (S, t) = Ee−r(T−t)N(−d2)− SN(−d1),

where

d1 =
log(S/E) + (r + 1

2
σ2)(T − t)

σ
√

(T − t)

d2 =
log(S/E) + (r − 1

2
σ2)(T − t)

σ
√

(T − t)

The following plot is based on the Black-Scholes formula with E = 10, r = 0.1, σ = 0.4:

3

3 Numerical Approach to European Put Option

3.1 Variable Transformation

As mentioned in the last part, we can easily transform the Black-Scholes equation into a diffu-

sion equation by change of variables. Take

S = Eex, t = T − τ/1/2σ2, V = Ev(x, τ), k = r/
1

2
σ2

Also, let

v = e1
1
2
(k−1)x− 1

4
(k+1)2τu(x, τ)

The Black-Scholes equation now becomes

∂u

∂τ
=
∂2u

∂x2
for −∞ < x <∞, τ > 0,

with initial condition:

u(x, 0) = max(e
1
2
(k+1)x − e

1
2
(k−1)x, 0).

4

Let V be a put option P, the boundary conditions are:

lim
x→−∞

u(x, τ) = e−
1
2
(k−1)x− 1

4
(k+1)2τ (e−kτ − ex), lim

x→∞
u(x, τ) = 0

3.2 Finite Difference Mesh

In this method, we cut the (x, τ) domain into a finite mesh with tiny space. Denote umn =

u(nδx,mδτ). By forward difference approximation of ∂u
∂x

and ∂u
∂τ

, we have

um+1
n − umn
δτ

+O(δτ) =
umn+1 − 2umn + umn−1

(δx)2
+O((δx)2)

and backward difference approximation:

umn − um−1n

δτ
+O(δτ) =

umn+1 − 2umn + umn−1
(δx)2

+O((δx)2)

If we take α = δτ
(δx)2

, the forward and backward difference approximation will be:

um+1
n = αumn+1 + (1− 2α)umn + αumn−1 (1)

and

um−1n = −αumn−1 + (1 + 2α)umn − αumn−1. (2)

The following numerical algorithms solving these equations comes from [1]. In the text-

book, algorithms are listed in Pseudocode format whose implementation is done by Matlab

function listed in the Appendix. We focus on the accuracy and efficiency of each method.

3.3 Explicit Forward Method

The Matlab function is listed in Appendix (a). Briefly, the method is solving each entry of

the mesh with a forward direction in τ . The iterating process is conducted on equation (1).

However, this method restricts α < 1/2. Value and error of European(T − t = 1) put option

computed by this method is plotted here:

5

Note that in general, the magnitude of error compared to the Black-Scholes formula is less

than 1.8e-3, which is sufficiently small for most applications. Also, the error increases as S

approaches the exercise price E = 10. This is due to the fact that around S = 10 is a saddle

point. When S is much smaller than 10, the result is approximately linear. If S is much larger

than 10, the value is convergent to 0. In both cases, they leave small room for the approximation.

Thus, the induced error is quite small. However, around S = 10, we have a transition from one

linear line to another. In this case, the approximation is used heavily. Therefore, we observe

larger error around S = 10.

3.4 Implicit LU Method

In fully implicit methods, the backward difference approximation instead of forward difference

approximation. Note if we write (2) with different m together as a system of equations:

Mum = bm

where

M =


1 + 2α −α 0 . . . 0

−α 1 + 2α −α . . .
...

...
...

... . . . −α
0 0 . . . −α 1 + 2α


um = (umN−+1, . . . , u

m
N+−1), b

m = um−1 + α(umN− , 0, . . . , 0, u
m
N+)

6

The LU method utilizes the unique trait of M that M is a tridiagonal matrix. Therefore,

we can efficiently take the LU decomposition of M such that M = LU . Then the problem is

transformed to two simpler problems that

Lqm = bm, Uum = qm.

The algorithm is realized by Matlab function listed in Appendix (b, c, d). Value and error of

this method computing same European put option is plotted here:

Note the magnitude of the absolute value of the error is less than 4e-3, which is less accurate

than the explicit method. However, the plot shows a similar trend of error. When S approaches

to 10, the error also increases and then decreases after 10. The reason for this behavior is the

same analyzed as above.

3.5 Implicit SOR Method

In this method, we face the same problem as in implicit LU method, solving

Mum = bm

However, in this time the Gauss-Seidel method is used. Let um,kn be the k-th iteration of um,

where the initial guess is denoted by um,0n . Then um,k+1
n can be calculated by

um,k+1
n =

1

1 + 2α
(bmn + α(um,k+1

n−1 + um,kn+1)), N
− < n < N+

7

where kth-error is measured by

||um,k+1 − um,k||2 =
∑
n

(um,k+1 − um,k)2.

During the calculation of each um, the algorithm is iterated until convergence, which means the

error is bounded by some small tolerance. SOR method is the refined method of Gauss-Seidel

method. Basically, the speed of convergence can be controlled by a new parameter ω:

ym,k+1
n =

1

1 + 2α
(bmn + α(um,k+1

n−1 + um,kn+1))

um,k+1
n = um,kn + ω(ym,k+1

n − um,kn)

If ω > 1, it is called over-relaxation. The algorithm is very aggressive to pursuit convergence.

Else ω < 1, it is called under-relaxation. The algorithm will take slower but more careful

moves to the convergence. In the SOR method, the parameter ω is auto-adjusted based on the

last iteration’s error. The algorithm is realized by Matlab function listed in Appendix (e,f).

Value and error of this method computing the same European put option are plotted here:

The magnitude of error here is 6e-3, which is also comparably small to the magnitude of

value. In the error plot, there is also one mode at S = 10. Note that this method is quite

important as it can be extended to PSOR(detail described in section 4) which is a good approach

to American put options.

8

3.6 Crank-Nicolson Method

In the above explicit method and implicit methods, only one type of difference approximation

is used. However, Crank-Nicolson Method uses the average of forward and backward approx-

imation. Different from Explicit Method, Implicit Method, and Crank-Nicolson Method do

not have any restriction on α. Also, Crank-Nicolson Method provides a rather smaller order

of error O((δτ)2) compared to O(δτ) of simple explicit and implicit methods(Proved by [1]).

By taking the average of equation (1) and (2), we have

um+1
n − umn
δτ

+O(δτ) =
1

2
(
umn+1 − 2umn + umn−1

(δx)2
+
um+1
n+1 − 2um+1

n + um+1
n−1

(δx)2
) +O((δx)2)

Ignoring the error term,

um+1
n − 1

2
α(um+1

n−1 − 2um+1
n + um+1

n+1) = umn +
1

2
α(umn−1 − 2umn + umn+1). (3)

Similarly, we can solve (3) by both modified LU and SOR methods(detail omitted here). The

relevant Matlab functions are listed in the Appendix(g,h). The result is plotted here.

3.7 Crank-Nicolson LU Method

9

3.8 Crank-Nicolson SOR Method

Note in either method, the magnitude of error is about 3e-3. Both errors are smaller than di-

rect LU and SOR methods. This result corresponds to above analysis that Crank’s estimation

has a smaller order of error term.

3.9 Error Analysis Based on δx and δτ

1. For Explicit Method and Implicit Method, we have proven the error is of orderO(δτ)+

O((δx)2). To better check this important behavior, we can plot error versus (δτ) and (δx)2

respectively.

2. Explicit Method:

3. Implicit Method:

10

4. For Crank-Nicolson Method, we have proven the error is of order O((δτ)2) +O((δx)2).

We can plot error versus (δτ)2 and (δx)2 respectively.

5. Crank-Nicolson Method:

In all above plots, we can identify a very clear linear relationship between error and the

variable examined. Therefore, the result corresponds to our assumption of the order of error of

Explicit Method, Implicit Method, and Crank-Nicolson Method.

4 Numerical Approach to American Put Option

4.1 Linear Complementary Problem

What makes American put options different from European put options is only the time of

exercise. As American put options can exercise early than European put option, it has more

11

”power” than European’s. Therefore, by no arbitrage opportunity, American put option should

have at least same price as European’s. Also, for P (S, t), there exist a free boundary Sf (t)

such that we exercise early than maturity if S < Sf (t) and hold on if S > Sf (t). By variable

transformation to u(x, τ), there exist a new free boundary xf (τ) such that

∂u

∂τ
=
∂2u

∂x2
for x > xf (τ), else

∂u

∂τ
>
∂2u

∂x2
(4)

u(x, τ) = g(x, τ) for x ≤ xf (τ), else u(x, τ) > g(x, τ) (5)

where g(x, τ) is the payoff function

g(x, τ) = e
1
2
(k+1)2τmax(e

1
2
(k−1)x − e

1
2
(k+1)x, 0).

Note that (4) and (5) can be also written into the form as

(
∂u

∂τ
− ∂2u

∂x2
) ∗ (u(x, τ)− g(x, τ)) = 0 (6)

∂u

∂τ
− ∂2u

∂x2
≥ 0, u(x, τ)− g(x, τ) ≥ 0 (7)

(6) and (7) together are called a linear complementary problem as this combination is the same

as explicitly (4) and (5) but efficiently eliminates the free boundary.

4.2 Numerical Solution and PSOR

The numerical approach to this problem can be done by PSOR. Basically, we need to solve a

modified version of a system of equations. where

C =


1 + α −1

2
α 0 . . . 0

−1
2
α 1 + α −1

2
α . . .

...
...

...
... . . . −1

2
α

0 0 . . . −1
2
α 1 + α


Cum+1 ≥ bm, um+1 ≥ gm+1

12

(um+1 − gm+1)(Cum+1 − bm) = 0.

To ensure um+1 ≥ gm+1, we only need to replace um,k+1
n = um,kn + ω(ym,k+1

n − um,kn) by

um,k+1
n = max(um,kn + ω(ym,k+1

n − um,kn), gm+1
n). The rest of the steps are just the same as

ordinary Crank SOR. The code is listed in the Appendix(i), we only plot the value estimated

here:

The Sf (t) in the plot is at around 7.408. Before the free boundary, American put options

will be exercised early. After the free boundary, it will be held for future decision.

4.24 Error Examination

For American put options, unfortunately, we do not have an explicit formula for its price like

the Black-Scholes formula. Therefore, it is hard to compare our numerical solution to the exact

value. However, we can still check some significant behaviour of the error.

Note that if we change the size of δx and δτ proportionally, the error should also change

proportionally. As PSOR is modified from Crank-Nicolson Method, we have the order of

13

error is approximately O((δτ)2) +O((δx)2). Pick δx1 and δτ1. Let

δx2 =
1

2
δx1, δτ2 =

1

2
δτ1

δx3 =
1

4
δx1, δτ3 =

1

4
δτ1

Then

P1 ≈ P + a(δτ1)
2 + b(δx1)

2

P2 ≈ P + a(δτ2)
2 + b(δx2)

2 = P +
1

4
(a(δτ1)

2 + b(δx1)
2)

P3 ≈ P + a(δτ3)
2 + b(δx3)

2 = P +
1

16
(a(δτ1)

2 + b(δx1)
2)

Then by subtraction,

P1 − P2 =
3

4
(a(δτ1)

2 + b(δx1)
2)

P2 − P3 =
3

16
(a(δτ1)

2 + b(δx1)
2).

Therefore we should have the relationship that:

P1 − P2 ≈ 4(P2 − P3).

The ratio of P1−P2

P2−P3
is plotted here(taking δτ1 = 2e− 5, δx1 = 0.02):

14

Note that only the ratio near S = 10 part is of our interest. When S is smaller than the

free boundary Sf (t) = 7.408, the error ratio randomly pick 0 or NaN . This is because that

before free boundary, the estimated values are the same as payoff function. Therefore, in most

time the denominator is 0 and the ratio is undefined. As S increases, the estimated value will

be convergent to 0 very fast that the approximation algorithm is not deeply used. The ratio will

again be uninterpretable.

5 Conclusion

Overall, this project exam different methods for pricing European put options with PSOR

Method for American put options. For the European put option part, the Crank-Nicolson

Method provides a more precise estimation. When talking about efficiency, the LU Method

is much faster than the SOR Method because inside SOR-solver function need to iterate un-

til convergence at each time step. Back to American options, in practice, the PSOR Method

computes very slow as it also requires to iterate until convergence. By adjusting over-relaxation

parameter, the runtime of computing convergence is optimized.

The underlying assumption for the pricing problem is quite simple. We ignore the effect of

transaction fee, dividends, etc. However, these advanced assumptions can be included by further

modified based on these algorithms. Moreover, we can also price another type of options by

changing the payoff function. These topics are beyond our discussion here.

The major difficulty for this project is to understand the idea how to transform the Black-

Scholes equation to a numerically solvable problem. I believe the value of this idea is beyond

only pricing options. This project may inspire me in the future whenever I need to apply nu-

merical approaches to the encountered problem.

15

6 Reference

[1] Wilmott, P., Howison, S., Dewynne, J. (1995). The mathematics of financial derivatives: A

student introduction. Oxford: Cambridge University Press.

16

7 Appendix

6(a) Explicit Method
1 f u n c t i o n [v a l u e s] = e x p l i c i t f d (dx , dt , M, Nminus , Nplus , k)
2
3 n p l u s = Nplus − Nminus ;
4 nminus = 0 ;
5 newu = z e r o s (n p l u s − nminus + 1 , 1) ;
6 b = z e r o s (n p l u s − nminus − 1 , 1) ;
7 a = d t / (dx∗dx) ;
8 f p r i n t f (’ R e s u l t by E x p l i c i t . Alpha = %d\n ’ , a) ;
9 x = (Nminus∗dx : dx : Nplus∗dx) ’ ;

10 o ldu = p a y o f f (x , k) ;
11 f o r m = 1 :M
12 t a u = m∗d t ;
13 newu (nminus +1) = u m i n f (Nminus∗dx , tau , k) ;
14 newu (n p l u s +1) = u m i n f (Nplus∗dx , tau , k) ;
15 n = nminus +2: np lus−1;
16 newu (n) = o ldu (n) + a∗(o ldu (n−1)−2∗o ldu (n) + o ldu (n +1)) ;
17 o ldu = newu ;
18 end
19 v a l u e s = o ldu ;
20 end

6(b) LU find y
1 f u n c t i o n [y] = l u f i n d y (a , Nminus , Nplus)
2
3 n p l u s = Nplus − Nminus ;
4 nminus = 0 ;
5 asq = a∗a ;
6 y = z e r o s (n p l u s − nminus − 1 , 1) ;
7 y (nminus + 1) = 1 + 2 ∗ a ;
8
9 f o r n = nminus + 2 : n p l u s − 1

10 y (n) = 1 + 2∗a − asq / y (n−1) ;
11 i f y (n) == 0
12 e r r o r (’SINGULA\n ’) ;
13 end
14 end
15 f p r i n t f (’OK\n ’)
16 end

6(c) LU solver
1 f u n c t i o n [u] = l u s o l v e r (b , y , a , Nminus , Nplus)
2
3 n p l u s = Nplus − Nminus ;
4 nminus = 0 ;
5 q = z e r o s (n p l u s − nminus − 1 , 1) ;
6 u = z e r o s (n p l u s − nminus − 1 , 1) ;
7 q (nminus + 1) = b (nminus +1) ;
8
9 f o r n = nminus + 2 : n p l u s − 1

10 q (n) = b (n) + a∗q (n−1) / y (n−1) ;
11 end
12 u (np lus−1) = q (np lus−1) / y (np lus−1) ;
13
14 f o r n = np lus−2:−1:nminus + 1
15 u (n) = (q (n) + a∗u (n +1)) / y (n) ;
16 end
17 end

6(d) Implicit LU Method
1 f u n c t i o n [v a l u e s] = i m p l i c i t f d 1 (dx , dt , M, Nminus , Nplus , k)
2
3 n p l u s = Nplus − Nminus ;
4 nminus = 0 ;
5 a = d t / (dx∗dx) ;
6 f p r i n t f (’ R e s u l t by LU . Alpha = %d\n ’ , a) ;
7 x = (Nminus∗dx : dx : Nplus∗dx) ’ ;

17

8 v a l u e s = p a y o f f (x , k) ;
9 y = l u f i n d y (a , Nminus , Nplus) ;

10 f o r m = 1 :M
11 t a u = m∗d t ;
12 b = v a l u e s (nminus +2: n p l u s) ;
13 v a l u e s (nminus + 1) = u m i n f (Nminus ∗ dx , tau , k) ;
14 v a l u e s (n p l u s + 1) = u p i n f (Nplus∗dx , tau , k) ;
15 b (nminus +1) =b (nminus +1) + a∗v a l u e s (nminus +1) ;
16 b (n p l u s −1) =b (n p l u s −1) + a∗v a l u e s (n p l u s +1) ;
17 v a l u e s (nminus +2 : n p l u s) = l u s o l v e r (b , y , a , Nminus , Nplus) ;
18 end
19 end

6(e) SOR solver
1 f u n c t i o n [loops , u] = SOR solver (u , b , Nminus , Nplus , a , omega , eps)
2
3 n p l u s = Nplus − Nminus ;
4 nminus = 0 ;
5 l o o p s = 0 ;
6 e r r o r = eps + 1 ;
7 w h i l e (e r r o r > eps)
8 e r r o r = 0 ;
9 f o r n = nminus + 1 : np lus−1

10 y = z e r o s (n p l u s − nminus − 1 , 1) ;
11 y = (b (n) + a∗(u (n−1 + 1) +u (n+1 + 1))) / (1+2∗ a) ;
12 y = u (n + 1) + omega∗(y − u (n + 1)) ;
13 e r r o r = e r r o r + (u (n + 1) − y) ˆ 2 ;
14 u (n + 1) = y ;
15 l o o p s = l o o p s +1 ;
16 end
17 end
18
19
20 end

6(f) Implicit SOR Method
1 f u n c t i o n [v a l u e s] = i m p l i c i t f d 2 (dx , dt , M, Nminus , Nplus , k)
2
3 n p l u s = Nplus − Nminus ;
4 nminus = 0 ;
5 a = d t / (dx∗dx) ;
6 f p r i n t f (’ R e s u l t by SOR . Alpha = %d\n ’ , a) ;
7 eps = 1 . 0 e−08;
8 omega = 1 . 0 ;
9 domega = 0 . 0 5 ;

10 o l d l o o p s = 1000 ;
11 x = (Nminus∗dx : dx : Nplus∗dx) ’ ;
12 v a l u e s = p a y o f f (x , k) ;
13 f o r m = 1 :M
14 t a u = m∗d t ;
15 b = v a l u e s (nminus +2: n p l u s) ;
16 v a l u e s (nminus + 1) = u m i n f (Nminus ∗ dx , tau , k) ;
17 v a l u e s (n p l u s + 1) = u p i n f (Nplus∗dx , tau , k) ;
18 [loops , v a l u e s] = SOR solver (v a l u e s , b , Nminus , Nplus , a , omega , eps) ;
19 i f l o o p s > o l d l o o p s
20 domega = domega ∗ (−1) ;
21 omega = omega+ domega ;
22 o l d l o o p s = l o o p s ;
23 end
24 end
25 end

6(g) Crank LU Method
1 f u n c t i o n [v a l u e s] = i m p l i c i t f d 2 (dx , dt , M, Nminus , Nplus , k)
2
3 n p l u s = Nplus − Nminus ;
4 nminus = 0 ;
5 a = d t / (dx∗dx) ;
6 f p r i n t f (’ R e s u l t by SOR . Alpha = %d\n ’ , a) ;
7 eps = 1 . 0 e−08;
8 omega = 1 . 0 ;
9 domega = 0 . 0 5 ;

10 o l d l o o p s = 1000 ;
11 x = (Nminus∗dx : dx : Nplus∗dx) ’ ;

18

12 v a l u e s = p a y o f f (x , k) ;
13 f o r m = 1 :M
14 t a u = m∗d t ;
15 b = v a l u e s (nminus +2: n p l u s) ;
16 v a l u e s (nminus + 1) = u m i n f (Nminus ∗ dx , tau , k) ;
17 v a l u e s (n p l u s + 1) = u p i n f (Nplus∗dx , tau , k) ;
18 [loops , v a l u e s] = SOR solver (v a l u e s , b , Nminus , Nplus , a , omega , eps) ;
19 i f l o o p s > o l d l o o p s
20 domega = domega ∗ (−1) ;
21 omega = omega+ domega ;
22 o l d l o o p s = l o o p s ;
23 end
24 end
25 end

6(h) Crank SOR Method
1 f u n c t i o n [v a l u e s] = i m p l i c i t f d 2 (dx , dt , M, Nminus , Nplus , k)
2
3 n p l u s = Nplus − Nminus ;
4 nminus = 0 ;
5 a = d t / (dx∗dx) ;
6 f p r i n t f (’ R e s u l t by SOR . Alpha = %d\n ’ , a) ;
7 eps = 1 . 0 e−08;
8 omega = 1 . 0 ;
9 domega = 0 . 0 5 ;

10 o l d l o o p s = 1000 ;
11 x = (Nminus∗dx : dx : Nplus∗dx) ’ ;
12 v a l u e s = p a y o f f (x , k) ;
13 f o r m = 1 :M
14 t a u = m∗d t ;
15 b = v a l u e s (nminus +2: n p l u s) ;
16 v a l u e s (nminus + 1) = u m i n f (Nminus ∗ dx , tau , k) ;
17 v a l u e s (n p l u s + 1) = u p i n f (Nplus∗dx , tau , k) ;
18 [loops , v a l u e s] = SOR solver (v a l u e s , b , Nminus , Nplus , a , omega , eps) ;
19 i f l o o p s > o l d l o o p s
20 domega = domega ∗ (−1) ;
21 omega = omega+ domega ;
22 o l d l o o p s = l o o p s ;
23 end
24 end
25 end

6(i) American Method
1 f u n c t i o n [v a l u e s] = American (dx , dt , M, Nminus , Nplus , k)
2
3 n p l u s = Nplus − Nminus ;
4 nminus = 0 ;
5 a = d t / (dx∗dx) ;
6 f p r i n t f (’ R e s u l t by American . Alpha = %d\n ’ , a) ;
7 a2 = a / 2 . 0 ;
8 eps = 1 . 0 e−32;
9 omega = 1 . 0 ;

10 domega = 0 . 0 5 ;
11 o l d l o o p s = 1000 ;
12 x = (Nminus∗dx : dx : Nplus∗dx) ’ ;
13 v a l u e s = g (x , 0 , k) ;
14 f o r m = 1 :M
15 t a u = m∗d t ;
16 G = g (x , t au , k) ;
17 b= v a l u e s (nminus +2: n p l u s) +a2∗(v a l u e s (nminus +3: n p l u s +1) −2∗v a l u e s (nminus +2: n p l u s) + v a l u e s (nminus +1: np lus−1)) ;
18 v a l u e s (nminus + 1) = G(nminus +1) ;
19 v a l u e s (n p l u s + 1) = G(n p l u s +1) ;
20 [loops , v a l u e s] = PSOR solver (v a l u e s , b , G, Nminus , Nplus , a , omega , eps) ;
21 i f l o o p s > o l d l o o p s
22 domega = −domega ;
23 omega = omega+ domega ;
24 end
25 o l d l o o p s = l o o p s ;
26 end
27 end

19

